傅里叶级数善于将复杂函数分解为更简单的三角分量,与量子计算的固有特性(如叠加和干涉)无缝契合。这种协同作用使量子信息得到更有效、更精确的表示,大大增强了数据处理、分析和探索量子数据中的周期模式的能力。这项工作深入探讨了傅里叶级数在量子机器学习 (QML) 中应用的巨大优势,并将其与量子计算的独特契合与传统方法进行了对比。傅里叶级数是一种数学工具,它允许我们用正弦和余弦的组合来建模任意周期信号。它的主要优点是从一个域转换到另一个域时需要更多的信号信息。事实上,这个级数并不适用于所有信号(狄利克雷条件 [1]);然而,在各个领域和部门,傅里叶级数是将信号从时域转换到频域的工具,将其分解为谐波相关的正弦函数。在量子计算中,特别是在量子机器学习 (QML) 分支中,量子模型由参数函数 f (x, θ) 描述,该函数受一些独立变量 x(可能是我们的输入数据)和一些参数 θ 的影响,这些参数帮助我们的函数尝试在输入数据中推广自身。考虑到这一点,并了解傅里叶级数对信号处理的巨大影响,因此,分析和实验傅里叶级数如何影响量子模型是非常有趣的,因此,如果它可以帮助我们
主要关键词